
smart
ALECJr

I
I
I

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Video Technology Ltd. It is against the law to copy this color
computer's BASIC on cassette tape, disk, ROM, or any other
medium for any purpose without the written consent by Video
Technology Ltd.

© Video Technology Ltq. 1983

LIMITED WARRANTY

Video Technology Ltd. shall have no liability or responsibility·
to purchaser or any other person or entity with respect to any
liability, loss or damage caused or alleged to be caused directly
or indirectly by this product, including but not limited to any
interruption of service, loss of business or anticipatory profits
or consequential damages resulting from the use or operation of
this product.

1

Fl RST EDITION - 1983

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any manner, is
prohibited. No patent liability is assumed with respect to the
use of the information contained herein. While every precaution
has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the
information contained herein.

© Copyright 1983, Video Technology Ltd.

2

I

I

I
I

INTRODUCTION

This manual is intended for people who want to learn to pro
gram in BASIC on the Color Computer. With a little time and
effort you will very soon discover then there is nothing very
difficult about learning how to program your computer. You
will be introduced to the fundamentals of BASIC and to the
procedures of programming. Nothing is taken for granted. No
prior knowledge is presumed. Things are explained one at a
time and step by step. All you have to do is to start at the
beginning and make sure you try everything as it comes up.
Take your time. Understand one step before going to the next.

The key to success is to try everything. It is not enough to
read about it. You must do it. You don't learn to play the
piano, type or swim by reading a book. You learn by doing.
Don't worry about making mistakes. It is part of the learning
process. If you do make a mistake, just correct the mistake and
continue. The computer doesn't worry about it, why should
you? There is nothing that can be done from the keyboard that
can damage your computer. Cautions are included in the text
when statements that might DESTROY data files are intro
duced. Thus, feel free to try things out with your computer at
every stage of learning.

In general, you should follow the SEQUENCE of presenta
tion given in the text. However, Chapter 15 which discusses the
use of tape storage may be read at anytime when you wish to
save a program on the cassette tape. While this manual is written
for one who wishes to learn to program in BASIC on this
Computer, it can also serve as a general introduction to pro
gramming in BASIC on any system. Just remember that the
BASIC language has many forms. There are slight differences
between one implementation of BASIC and another.

Finally, this manual will not only help you to understand
BASIC but it will also help you to understand the fundamentals
of computer programming in general.

Have fun with your color computer.

3

I

4

I

Contents

TABLE OF CONTENTS

1. THE COMPUTER Page 9
- WHAT IS A COMPUTER?
- WHAT MAKES UP A COMPUTER SYSTEM?
- WHAT IS A PROGRAM
- COMPUTER LANGUAGE
- BASIC

2. HOW TO USE YOUR COLOR COMPUTER
- TO START

HOW TO OPERATE THE KEYBOARD
PRINT ANDIRETURNI
SYNTAX ERROR
EDITING
INSERT
CLS
A LOOK AHEAD

Page 15

3. YOUR COLOR COMPUTER AS A SIMPLE CALCULA-
TOR Page 29
- SIMPLE INSTRUCTIONS
- ORDER OF NUMERIC OPERATIONS
- BRACKETS

4. CONSTANTS AND VARIABLES
- CONSTANTS
- VARIABLES
- LET
- SEMI-COLONS AND COMMAS
- COLONS

5. PROGRAMMING
- INPUT

REM
NEW
RUN
LIST
PAUSE IN LISTING
DELETING A LINE

5

Page 33

Page 39

Contents

6. NUMERIC FUNCTIONS Page 47

WHAT IS A FUNCTION
ABS
SGN
SOR
LOG
EXP
INT
RND
SIN
cos
TAN
ATN

7. STRINGS Page 53
- STRING VARIABLES
- STRING FUNCTIONS

LEN
STR$
VAL
LEFT$
RIGHT$
MID$
ASC
CHR$

- STRING COMPARISONS
- INKEY$

8. COMPUTER PROGRAMMING REVISITED Page 63
- GOTO
- BREAK
- CONT
- STOP
- END
- CLEAR

9. CONDITIONS Page 69
- IF ... THEN ... E LS E
- CONDITIONAL BRANCHING
- LOGICAL OPERATORS
- TRUTH TABLES

6

Contents

10. LOOPING Page 77
- FOR ... TO
- NEXT
- STEP

11. SUBROUTINE Page 83
- GOSUB
- RETURN

I
12. LISTS AND TABLES Page 87

- ARRAYS
- DIM

I 13.READ,DATA,RESTORE Page 93
- READ
- DATA

I - RESTORE

14. PEEK AND POKE Page 99

- PEEK

I - POKE

15. STORING PROGRAM ON TAPE Page 107
(CASSETTE INTERFACE)
- SETTING IT UP
- CLOAD
- VERIFY
- CSAVE
- CRUN
- PRINT#
- INPUT#

16. GRAPHICS Page 115
- MODES
- GRAPHIC CHARACTERS
- INVERSE
- SET
- RESET
- POINT

7

17. MORE COMMANDS AND INFORMATION
- PRINT@
- PRINT TAB
- PRINT USING
- INP
- OUT
- USR

18. SOUND AND SONGS
- SOUND
- SONGS

19. COLOR
- COLOR

20. THE PRINTER
- LLIST
- LPRINT
- COPY

APPENDIX
- ERROR MESSAGE
- ASCII CODE TABLE
- SUMMARY OF BASIC COMMANDS

8

Contents

Page 121

Page 129

Page 135

Page 139

Page 143

I

I
I

I

CHAPTER

I
THE COMPUTER

- WHAT IS A COMPUTER?
- WHAT MAKES UP A COMPUTER SYSTEM?
- WHAT IS A PROGRAM?
- COMPUTER. LANGUAGE
- BASIC

9

10

I

I

I

1
I
I
I
I
I

Chapter 1

WHAT IS A COMPUTER?

A computer is a device which performs various operations based
on instructions given by the one who uses it. The computer
cannot tell the user how to solve a problem. It has to be told
what to do. The computer cannot think. Yet it is a very effec
tive tool in the hands of a competent and experienced user.

A computer system consists of a number of machines or
devices where operations are coordinated by a central cor1irol
unit. These machines when working together are able to per
form simple logical and arithmetic processes such as comparing
two numbers. They can also read in information, store this
information and give out results in a form understandable by us.

WHAT MAKES UPA COMPUTER SYSTEM?

Generally a computer system consists of the following units:
i) Central Processor Unit (CPU) .

This can be considered the brain of the computer system.
It performs operations specified in the instructions, such
as arithmetic and logical operations.

ii) Memory Unit - Information and instructions given by the
user or generated by the computer are stored here. This
unit is inside the computer. The CPU gets information
from it directly.

iii) Mass Storage Unit - This unit is outside the computer. It
stores instructions and information given by the user or
generated by the computer. The tape storage unit and the
floppy disk units are examples of mass storage units.
Information stored in these units has to be transferred to
the memory unit before the CPU can process it.

iv) Input Device - As the name suggests this allows the user
to enter instructions or information to the computer. The
keyboard is an example of an input device.

11

Chapter 1

v) Output Device - This receives information or results sent
from the computer. Examples are the printer and the TV
screen.

The input and output devices together act as a two-way
communication channel between the computer user and the
computer system.

Although computer systems vary in size, all practical
computer systems require the above mentioned units.

computer

T Vor
f-----E- +--7

MASS STORAGE
Video Monitor DISK

output device ~ I
CPU

I MASS storage device

-
I memory unit

I
>---

ASCII -
KEYBOARD

/!\
input device

,; \I/

PRINTER
CASSETTE - '--

TAPE UNIT

output device MASS storage device

Configuration of a Computer System in general

12

I

I

I
I
I
I

Chapter 1

WHAT IS A PROGRAM?

A program is a set of instructions. The process of specifying a
set of instructions for a computer is called programming. The
individual preparing a program is called a programmer. The
programmer 'inputs' a series of instructions (program) which
tells the computer the steps to take to complete the task
required of it.

COMPUTER LANGUAGE

There are two steps involved in preparing a program for a
computer. First the programmer must know what instructions
to specify and the order in which to specify them. Second, he
must be able to communicate his instructions to the computer.
Communication is accomplished by means of a programming
'language' which the programmer writes, and the computer
'reads'.

There are many programming languages in use today. Some
are designed for very specialised applications. Others are de
signed for more general use. BASIC is a language in the latter
category.

BASIC

BASIC, an acronym of Beginners' All-Purpose Symbolic Instruc
tion Code, is a powerful programming language. BASIC has a
simple English vocabulary, few grammatical rules and it resem
bles ordinary mathematical notation. To instruct your com
puter you must know BASIC. It will be introduced gradually
and explained at each step.

Programs written in BASIC are translated by a language
translation program into a language that the central processor
unit understands. This language translation program is called the
BASIC Interpreter, and is contained in the main console.

13

14

I

HOW TO USE YOUR COLOR COMPUTER

-TO START

I - HOW TO OPERATE THE KEYBOARD
- PRINT AND!RETURN!
- SYNTAX ERROR
- EDITING
- INSERT
-CLS
- A LOOK AHEAD

15

16

Chapter 2

TO START

When you have set up your color computer and switched it on,
your TV screen should look like this.

READY

•

READY tells you that the computer is waiting and as the
word suggests is ready 'to receive your instructions. The flashing
green square, the CURSOR, tells you exactly where you are on
the screen.

17

Chapter 2

HOW TO OPERATE THE KEYBOARD?

The keyboard of your computer looks complicated but it is
really not too difficult to operate.

Let us take the~ key as an example. To get the number

9 just press the key. If you wish to get READ, press the !CTRL I
key and at the same time press the [fil key. If you wish to get

the bracket on the[]] key, press the ! SHI FT I key and at the

same time press the~ key. To get .A3S(, which is below the

[fil key, is a little more complicated. First press the ICTRLI key

and keep pressing while you press the I RETURN I key once and

then press the[[] key. ABS(will appear on your screen. All it

takes is a little practice. If you are wondering "What would
happen if I did " Go ahead and do it and find out for
yourself.

□□□□□□□□~□ Do ABS (

□□□□□□□□□□ 8
a □□□□□□□□□□□
~□□□□□□□□□ c=J

18

I
I

Chapter 2

PRINT AND !RETURN!

You instruct, your computer using the language of BASIC. The
computer can obey at once, or it can st<:>re the instructions and
run them later as a program. Let us now instruct the computer
to act at once. To do this, we need our first two words from the
BASIC language:

□□□□□□□□□□ Do PRINT

□□□□□□□□□ ~B
□□□□□□□□□□□□
CJ □□□□□□□□□ CJ

19

Chapter 2

When using these o~any ·other statements you can type out
each letter, e.g. P, R, I, N, Tor you can just press the appro-

priate combination of keys, in th is case I CTR LI and ~ to get

the Keyword. Try it out on your computer.

When you type PRINT the computer knows that it has to
print what follows on the screen.

For example, type PRINT 6-3 and the screen should look
like this.

PRINT6-3 ■

Notice that when you press a key there is a (BEEP) sound.
This tells you that the key has registered and is helpful in that
you do not constantly have to check the screen.

Now press I RETURN I and your screen should look like this.

PRINT 6-3 i RETURN I
3

READY

■

20

I

I

I Chapter 2

By pressing the !RETURN I you have told the computer

that the message is completed and you want the line executed.

Remember then to press !RETURN! after each completed

message.

SYNTAX ERROR

You may find the following appear on your screen.

? SYNTAX ERROR

■

This means SYNTAX ERROR. A syntax error is usually due

to incorrect punctuatio.n or a typing error.

21

Chapter 2

Suppose you type in PR/MT 6-3 and then press the

I RETURN I key your screen will look like this.

PRIMT6-3 IRETURNI

? SYNTAX ERROR
READY

■

In addition to SYNTAX error there are a number of other
errors that may occur, the various error types are listed in an
appendix.

22

I
I
I

I

I

Chapter 2

EDITING

If you make a mistake while you are entering a program state

ment, and you press the I RETURN I key, you can use the

ICTRL I and the appropriate key to move the cursor back to

the wrong entry to make a correction.

PR/MT ■

When the cursor is over T press ICTRL I and I RUBOUT I. T

will disappear. Move the cursor over M. Depress I CTRL I and

I RUBOUT! again M will disappear. Then type in NT - TO GET

PRINT.

23

Chapter 2

There are four directions in which you can move the
CURSOR: left, right, up, 'down as indicated by the black
arrows on the keyboard. You will find these on the bottom
right hand corner of your keyboard.

Let us take an example. If you have typed in a line, then
the CURSOR is at the right side of the screen. Let us suppose
you have made a mistake at the beginning of the line. You want

to delete a WORD. PRESS the I CTRL I key and the ~ key.

Keep both pressed until the CURSOR has moved back to where

you want it. Then press the I CTRL I key and I RUBOUT! and

keep pressed until the line is erased.

HELLOJOHN ■

24

I

I

Chapter 2

You want to eliminate JOHN. Move the CURSOR to J.
Press ICTRL I and IRUBOUTI. Keep pressed and see what
happens.

It is also possible to type in a letter over another letter. Let
us suppose you want to change JOHN to JAMES. Position the
CURSOR over 0. Type in AMES. and you get JAMES.

Suppose that after having typed HELLO JAMES you decide
to change the name again. However this time suppose the

CURSOR is at a lower line. Well all you do is to press ICT1RLI
and the keyD. You will find that the CURSOR will move up

to the line you want to change. Each time you press these two
keys the CURSOR will move up one line. Once you have
reached the line you wish to edit you can just carry on the
same way as the example. above.

To familiarise yourself with editing you need to experiment
with it. Here as elsewhere the old adage holds true: Practice
Makes Perfect.

25

Chapter 2

INSERT

This allows you to insert characters starting at the position the
CURSOR is in without changing what is already there. For
example: you wish to insert S in JOHNTON between the N

and the T.
Well you move the CURSOR to the first T, press the

~IC_T_R_L~I and [!J keys (which will put you into the INSERT

Mode) and then type S. Your display should now look like this:

JOHNSTON

Besure to press I RETURN I after you finished editing.

This will update the current line where the CURSOR is located.
If you forget to do so, the original line is still kept in the
program.

CLS

As you have guessed by now !CTRLI means control. If you
want to clear the whole screen, press ICTRLI and I CLSI at the
same time and then press I RETURN!. This will clean the screen
but it will not clean the memory. The program will be wiped

out from memory if you press ICTRLI and JNEWI. It will also
be wiped out if you disconnect the computer.

26

I

Chapter 2

A LOOK AHEAD

At this stage you are probably very eager to jump ahead and
see what your computer is capable of. So using your newly
acquired ability to try typing in these programs.

Be careful to type in everything. Do not worry about
understanding the commands at the moment.
1) To get all the characters 6n the screen type this.

TfJ FOR I =f) TO 1 !RETURNJ

2fJ FOR J = fJ TO 255 I RETURN J

3f) POKE28672+/*256+J,J IRETURNI

4fJ NEXT jRETURNJ

5fJ NEXT JRETURNI

6f) GOTO 6fJ I RETURN I
RUN JRETURN]

2) To see some of the color possibilities: try this one.

TfJ MODE (1) I RETURN I
2fJ FORY=fJTO15 IRETURNJ

3fJ FOR X = 1 TO 4 !RETURNJ

4fJ COLOR X . !RETURN I
5fJ FORK =fl TO 31 !RETURN!

6fJ SET(X*32-32+K, Y) JRETURNJ

lfJ NEXT !RETURN I

Bf) NEXT JRETURNJ

9f) NEXT JRETURNI

Tf)f) GOTO Tf)f) JRETURNI

RUN !RETURN I

27

Chapter 2

To return to Text mode type ICTRLI-IBREAKI.
If you would like to change your background color you

should type COLOR, 1. To return to the original green just
type COLOR,0. Note that when you do this in mode 1 the
foreground colors will also change. All these will be explained
later.

28

I

I

I
I
I

CHAPTER

YOUR COLOR COMPUTER AS A
SIMPLE CALCULATOR

- SIMPLE INSTRUCTIONS
- ORDER OF NUMERIC OPERATIONS
- BRACKETS

29

I

30

1
1
1

Chapter 3

SIMPLE INSTRUCTIONS

To use the computer as a calculator simply type PRINT foi

lowed by the problem and then RETURN . Your computer,

of course, cannot only add, using +, but it can also subtract
using -, multiply using *, divide using / and raise one number
to the power of another using t. +, -, *, /, are called opera
tions, and they operate on numbers called operands.

For example type

PRINT 3 t 2 !RETURN!

and the answer 9 will appear.

ORDER OF NUMERIC OPERATIONS

When operations are combined, care must be taken to note the
order in which the computer carries out the operations. The
order is as follows:
1) Minus sign - used to indicate negative numbers.
2) Exponentiation starting at the left and moving right.
3) Multiplication and division (which are given the same order

of precedence). Here too the computer moves from left to
right.

4) Subtraction and addition moving from left to right.

Examples: A) PRINT 3 t 2 t 2 t 2 I RETURN I
6561

31

BRACKETS

Chapter 3

This is done by squaring 3 to get 9. Then
squaring 9 to get 81, and then squaring 81
to get 6561.

Bl I ~:INT6 * 2+3 I RETURN I
Here the computer first multiplies 6 x 2 and
then adds 3.

Cl l'.;;INT6+3 *4+6/3 !RETURN!

First the computer carries out the multi
plication and division and then adds to give
6+12+2.

All operations within brackets will be carried out first before
the other operations.

Example: PRINT 18/(3 + 3) I RETURN I
3

Where brackets are placed within brackets the innermost
brackets are calculated first.

Example: PRINT 2D/(1 + (3 t 2)) I RETURN I
2

32

I

r
r
I

CHAPTER

CONSTANTS AND VARIABLES

-CONSTANTS
-VARIABLES
- LET
- SEMI-COLONS AND COMMAS
- COLONS

33

I

34

Chapter 4

CONSTANTS

In the previous chapters we have been using constants. A
constant is, of course, something which does not change and
can be either positive or negative. The number 6.32 is a con
stant. Moving onto 6.33 just gives a different constant.

The range of a number in the computer is -1038 ..;; x..;; 1038 •

The lowest positive number is 10-38 •

VARIABLES

A variable, as you might surmise, is something which changes.
In Y = X + 3 both X and Y are variables as they have many
possible values. A variable can be denoted by any letter of the
alphabet, any two letters, or by a letter and a number providing
the letter comes first. For example, A, AB, A6.

The variable name can be any length but only the first two
characters will be recognised by the computer. For example, the
computer will consider HELLO MR BLOGGS to be the same
variable as HE.

A variable name cannot be any of the command words like
LET or PRINT.

LET

The command LET can be used to assign a value to a variable.
If a variable is not assigned a value it is held to be equal to zero.
The variable will keep its assigned value until another LET,
READ or an INPUT command is used to change the value.

Example: LET A = 7 I RETURN I
LETB=9 IRETURNI

PRINT A+ B jRETURNI

16

35

Chapter 4

In BASIC the = sign does not mean the same as it usually
does but tells the computer to give the value on the left hand
side the same value as the right hand side.

The left hand side of the statement must always be a
variable.

Have a look at the next example.

Example: LET A= 2 I RETURN I
LETB=3 jRETURNI

LETC=2() !RETURN!

LETA =2+A !RETURN!

LET D =3 + D !RETURN I
PRINT A; B; C; D !RETURN!

4 3 20 3

In the fourth line we see that A is assigned a new value of
2 plus the old value of A which was also 2 giving a total of 4.

In the fifth line we see that Dis given the value 3 +D, as
zero is the value given to any variable without an assigned value.

Note that in your computer it is not strictly necessary to
use LET to assign a value to a variable, and A = 7 will carry
out the same function as LET A = 7.

SEMI-COLONS, COMMAS

If more than one item is included in a PRINT statement the
items should be separated by either a (,) or(;). Note the use of
the semi-colon in the PRINT statement above. This causes the
results to be printed immediately after each other with a space
in between. When we use the semi-colon with strings there is no
space.

36

I

I

Chapter 4

A comma causes the result to be printed as follows. Think
of your screen divided up into 2 sections of 16 characters. A
comma will cause the first result to be printed at the beginning
of the first section - on the left side - the second result to be
printed at the beginning of the second section. The third result
will go back to the first section and will be printed under the
first resu It. If a resu It is longer than 16 characters it wi 11 overlap
into the next section. The next result will ignore this section
and start at the beginning of the following one.

COLONS

If you have more than one statement on a line you must
separate them by using colons.

Example: 1(/) FOR I= 1 TO 5: PRINT I;: NEXTI RETURN I
RUN I RETURN I
1 2 3 4 5

Lists of PRINT Statements

If you type 1(} PRINT 4 !RETURN I
2(/) PRINT 6 I RETURN I
3(/) PRINT 8 !RETURN I
RUN IRETURNI

Your screen will show

37

Semi Colons at the end of PRINT Statements

If you type 1D PRINT 4; !RETURN I
2D PRINT 5; I RETURN I
3D PRINT 6; I RETURN I
RUN IRETURNI

Your screen will show

14 5 6

38

Chapter 4

I

CHAPTER

PROGRAMMING

- INPUT
- REM
- NEW
- RUN
- LIST
- PAUSE IN LISTING
- DELETING A LINE

39

40

I

Chapter 5

OK, so now let's try some simple programming. In the last few
chapters we have been dealing with "immediate execution" -
with the computer obeying immediately. We now want the
computer to store statements so that they can be executed
later on - "deferred execution".

INPUT

Have a look at this program.

TfJ REM RAISE TO THE POWER OF 3 IRETURNI
2fJ INPUT A /RETURN I
3{') PRINT A; A t 3 I RETURN I

The INPUT in line 20 asks you to assign a value to the
variable A. When you run this program, a question mark "?"
will display. The computer will wait until you type in a value
for this variable A.

Notice that each line begins with a number. These numbers
tell the computer not to obey immediately but to store away.
The line number governs the order in which the line will appear
on the screen. It is useful to write the numbers in tens as new
lines can be later fitted into any part of the program by giving
it a value of say 15 or 25. The range of possible line numbers is
from 0 to 65529.

REM

The REM in line 10 is simply there to remind you later on of
the purpose of the program. The computer will ignore it. The
REM statements use memory space so if you are short of space
you can delete REM statements.

The INPUT statement in line 20 tells the computer (when
the program is being run) not to execute until the variable
value(s) have been typed in.

The PRINT statement has already been met.

41

Chapter 5

NEW and RUN

So how do we feed the program into the computer. Well first

press the INEWJ key and /RETURN!. This will wipe out any

old programs and variables. Remember the NEW command
clears the memory of the computer.

Now type

1@ REM RAISE TO THE POWER OF 3 I RETURN!

2{') INPUT A I RETURN I
3fJ PRINT A; A t 3 I RETURN I

You can now run the program by pressing I RUN J and

I RETURN!. The sign ? \/:.till now appear under line 30. This is

the result of the INPUT statement and the computer is now
waiting for you to give a value to the variable A. This value
shou Id be typed next to?. ----

Let's type 2 and jRETURNJ

The screen will look like this.

1@ REM RAISE TO THE POWER OF 3IRETURNI
2@ INPUT A I RETURN I
3fJ PRINTA;A t 3 IRETURNI
RUN !RETURN!
? 2 IRETURNI
2 8

42

Chapter 5

RUN

By pressing I RUN I and I RETURN I the whole program will be

executed. If however you press! RUN !then a line number then

I RETURN I the computer will start execution at the line

specified.
Have a look at this program

1@ INPUT A, B I RETURN I
2@ PRINT A+ B I RETURN I
RUN !RETURN!

What will happen here is first of all you will get one '?' for
you to put a value of A beside. On the next line you will get
'??' for you to put the value of B beside. So carrying on with
the program above.

1@ INPUT A, B I RETURN J

2@ PRINT A + B I RETURN J

RUN jRETURNI

? 3 !RETURN!
?? 6 !RETURN!

9

43

Chapter 5

LIST

If you want the whole program to be displayed in an ascend-

ing line number order then just pressjLISTjand !RETURN I. I

Example: 10 INPUTA .jRETURNi

20 INPUT B jRETURNI

30 PRINTA;B;C;A +B+C jRETURNI

25 INPUTC JRETURNI

LIST /RETURN!

10 INPUT A
20 INPUT B
25 INPUTC
30 PRINT A; B; C; A+ B + C

If you only want one line to be displayed then type

LIST (Line number) I RETURN I

Example: LIST 20 IR ET URN I
20 INPUT B

44

I

I
I
I
I
I

To list part of a program say line 20 - 30 type

LIST 2(/)-3(/) I RETURN I
2(/) INPUT B
25 INPUTC
3(/) PRINT A; B; C; A + 8 + C

Chapter 5

If you type LIST - 3(/) you will get the program listed up to
line 30 from the start.

If you type LIST 3(/) - you will get the program listed from
I ine 30 to the end.

45

Chapter 5

PAUSE IN LISTING

If you have a very long program you might wishtohave a look
at a particular line while it is being listed. To do this just press

the I SPACE I key when you wish the listing program to stop.

DELETING A LINE

To get rid of any program line just type the line number and

!RETURN!.

46

CHAPTER

NUMERIC FUNCTIONS

- WHAT IS A FUNCTION
ABS

. SGN
SOR
LOG
EXP
INT
RND
SIN
cos
TAN
ATN

47

48

I
Chapter 6

WHAT IS A FUNCTION?

A function is a 'law' which when applied to a certain value will
give a new value. We call the first value the argument and the
new value the result.

SOR is the square root function. So if we type

PRINT SOR (9) I RETURN I

we will get the answer 3.
In this example 9 is the argument, SQR is the function and

3 is the result.
Below we give a list of the numeric {unctions and a brief

explanation. Any function which we consider to be new to the
reader will be explained in more detail afterwards. The func
tions will appear later on in programs so we don't give example
program for each one.

A LIST OF NUMERIC FUNCTIONS

Function

ABS (X)

SGN (X)

SOR (X)

LOG (X)

EXP (X)

INT (X)

What it does

Returns the absolute (positive) value of X

Returns the sign of the argument
X negative returns - 1
X positive returns+ 1
X zero returns 0

Returns the square root of X. X cannot be
negative.

Gives the natural logarithm of X. The value
of the argument must be greater than zero.

Gives you the value of ex. e = 2.71828

Gives the greatest integer which is less than
or equal to X.

49

RND (X)

SIN (X)
COS (X)
TAN'(X)

ATN (X)

Chapter 6

Gives random whole numbers between 1
and· X. If X equals zero RND (X) returns
random numbers between 0 and 1. X can
not be negative."

The argument of the trigonometrical func
tions is in radians . The range of X is
-9999999 ~ (X) ~ 9999999.

This gives the result of ARC TANGENT in
RADIANS.

A FURTHER LOOK AT ABS: SGN: INT: RND

ABS (X)

This gives the absolute (positive) value of the argument. So
ABS (-7) = 7.

Example: PRINT ABS (7 - 2 * 4) I RETURN I
1

_SGN (X)

This function will give the value of +1 if X is positive, 0 if X
is zero, and -1 if Xis negative. So SGN (4.3) = 1;SGN (6) =I;
SGN (-.276) = -1.

Example:

INT (X)

A= -6 !RETURN I
PRINT SGN (A); SGN (A -A) I RETURN I
-1 D

This converts arguments which are not whole into the largest
whole number below the argument. So INT (5.9) = 5; also
INT (-5.9) = -6.

50

I

Example: PRINT INT (-6.7) I RETURN I
-7

RND (X)

Chapter 6

This will produce a random number between 1 and X if X is
positive.

Example: I PRINT RND /19) I RETURN I

You will get a number between 1 and 19. RND (I) will give
you a number between 0 and 1.

X cannot be negative.

51

I

52

CHAPTER

STRINGS

- STRING VARIABLES
- STRING FUNCTIONS

LEN
STR$
VAL
LEFT$
RIGHT$
MID$
ASC
CHR$

- STRING COMPARISONS
- INKEY $

53

54

Chapter 7

We assume that you are now familiar with the use of the

I RETURN I key so we will not keep reminding you of it.

A string is any combination of CHARACTERS that is
treated as a unit.

Strings must be enclosed in inverted COMMAS.

Example: .__I _"_'H_E_L_P_" ______________ ___,

When using the PRINT statement the semi-colon will not
cause a space to appear between the results. They will appear
immediately next to each other.

STRING VARIABLES

Any letter of the alphabet can be used as a string variable but
must be followed by a $ sign. The computer accepts these
characters as the variant name.

Example: I A$= "ONE DOZEN EGGS"

You can add strings to each other. This is called concatena
tion. You cannot subtract, divide or multiply.

Now let us try out this program.

1fJ A$= "I A"
2() 8$ = "M 15 YE"
3() C$ = "ARS OLD"
4() PRINT A$+ 8$ + C$

RUN
I AM 15 YEARS OLD

Notice the spacing of the string characters here.

55

Chapter 7

STRING FUNCTIONS

We can also use functions to act on strings. Have a look at the
following:

LEN
This function works out the length of the string so if ·you
type, PRINT LEN ("JOHN"} the computer will return the result
4. This is telling you that there are 4 CHARACTERS in the
string "JOHN". Blank spaces have the value of a CHARACTER.
Thus if you put in spaces "J O H N" it comes out as 7
CHARACTERS.

STA$

The STA$ function changes numbers into strings. Let Lis take a
look at the following example and see how it works.

A$= STR$ (73)

This is the same as saying

A$= "73"

Here is an example program

1() A$= STR$ (7 * 3)
2() 8$ =A$+ "BIG"
3f)PRINTB$

RUN
21 BIG

56

I

I

I

I

I

I

Chapter 7

VAL

VAL works like STR$ but in reverse. It changes strings into
numbers. If only works on numbers not on operators or
characters.

VAL ("61") == 61

Look at the following short program

1" A$ == "33"
2" 8$ == "2""
3" C == VAL (A$+ 8$)
4" PRINT C; C + 1""
RUN
332" 342@

SUBSTRINGS

It is also possible to get substrings of strings. A substring is as
you might guess a part of a string. For example: "ASC" is a
substrung of "ASCDE".

LEFT$ (A$, N)

This will return the substring from the leftmost CHARACTER
- the first character - to the Nth CHARACTER.

Example: 1" A$== "A8CDE"
2" 8$ == LEFT$ (A$+ "FGH", 6)
3"PR/NT 8$

RUN
A8CDEF

57

Chapter 7

RIGHT$ (A$, N)

This will return a substring as in the above example but starting
from the Nth CHARACTER from the end and running to the
last one - the right most CHARACTER in the string A$.

Example: 1fJ A$= 'WHY"

MID$

2fJ 8$ = RIGHT$ (A$+ "ME", 4)
3f)PRINT 8$

RUN
HYME

MID$ (A$, M, N) returns a substring of the string A$ starting
from the Mth CHARACTER with a length of N CHARACTERS.

Example: 1fJ A$= "ABCDEFGH"
2f) 8$ = MID$ (A$, 2, 3)
3f)PRINT 8$

RUN
BCD

58

Chapter 7

ASC

The ASC statement which is written as ASC (A$) where A$ is
a variable string expression, will return the ASCII code (in
decimal) for the first CHARACTER of the specified string.
Brackets must enclose the string specified. Refer to the appen
dix for the ASCII code. For example the ASCII decimal value
of "X" is 88. If A$= "XAB", then ASC (8$) = 88.

Example: 1fJ X = ASC ("ROY")
2f)PR/NT X

RUN
82

CHR$

This statement works the opposite way around to the ASC
statement. The CHR$ statement will return the CHARACTER
of the given ASCII code. The argument may be any number
from 0 to 255 or any variable expression with a value within
that range. Brackets must be put around the argument.

Example: I 30PR/NTCHR$ /68)

59

Chapter 7

STRING COMPARISONS

Relational operators can be applied to string expressions to
compare the strings for equality or alphabetic precedence. As
far as equality is concerned all the characters (and any blanks)
must be identical.

Example: 1fJ A$= "AA"
2fJ 8$ = "BA"
Jf) IF A$= 8$ then PRINT 2fJ
4fJ /FA$ < 8$ then PRINT Jf)
5fJ IF A$ > 8$ then PRINT 4fJ

RUN
Jf)

The comparisons are done by taking the value of the string
characters from the table in the appendix and then comparing
these values. The table gives us the value for 'A' as 65 and 'B'
as 66. The program above is therefore asking for confirmation
that 65 is less than 66.

If the first two CHARACTERS of a string are equal the
computer will search for the third CHARACTER and do the
comparison on this.

Example: 1fJ A$= "ABC"
2fJ 8$ = "ABD"
Jf) IF 8$ > A$ then PRINT 4fJ

RUN
4fJ

The CHARACTERS compared here are C and D. The table
value of C is 67 and the table value of D is 68. B$ is therefore
greater than A$.

60

I
I

Chapter 7

INKEY$

INKEY$ returns either a one-character string containing a char
acter read from the keyboard or a null string if no character

is pending at the keyboard. All characters are passed through
to the program except for Control-C, which terminates the
program.

Example: Tf) A$= INKEY$
2fJ PRINT A$;
3f) GOTO TfJ

61

62

I

I
I

I
I

I

I
I
I
I

CHAPTER

COMPUTER PROGRAMMING REVISITED

-GOTO
- BREAK
-CONT
-STOP
-END
- CLEAR

63

64

I
I
I

I

Chapter 8

Here are some more commands to help you write more interest
ing programs.

GOTO
This command tells the computer to go backwards or forwards
to the line number following the GOTO statement and then to
carry on executing the program from that line number.

Example: 1@ INPUT A
2@PRINT A, A t 3
3@GOTO 1@

RUN
?

If you give the value say 2 to A the computer will return the
results 2 and 8. However a question mark will again appear on
the screen asking you to give A another value. This procedure
is the result of the GOTO statement tells the computer not to
end at line 30 but to go back to line 10 and start again.

BREAK

When you get tired of putting in different values of A you

can press I BREAK I next to the question mark. The computer

will now stop executing the program and BREAK IN 1@ will

appear on your screen. It should be noted that !BREAK I is not

a command as such. You can break any continuous program by

implementing !BREAK!.

65

Chapter 8

CONT

If however, after stopping the program execution you feel
there are still some values of A you would like to try you can
type CONT, and the computer will start to execute the program
once more.

STOP

A useful statement in programming is STOP. This causes
the program to stop at the line printed after the STOP state
ment and can help you to examine the results of the variables
at various stages in the program. It is also extremely useful
when it comes to locating mistakes (debugging). A liberal
supply of STOP statements throughout a program is therefore
a good idea.

You can restart the program by typing CONT. The program
will carry on from the next line after the STOP.

END

The END statement is used to terminate execution. Unlike with
STOP execution cannot be continued after an END statement.

Example: 1fl INPUT A
2fl IF A> fl THEN PRINT "A IS POSITIVE":

END
3fl IF A< fl THEN PRINT "A IS NEGATIVE":

END
4fl PRINT ''A IS ZERO"
5fl END

I
I
I
I
I

NOTICE the STOP statement will give you the line number I
when you stop. This will not happen with the END statement.

66

I

I
I

I

Chapter 8

CLEAR

The CLEAR statement is used to assign more memory spaces
for string variables.

Example: 11/J CLEAR 1i'JD

The value following is the number of bytes of memory. This
value may be omitted and the computer will assign the default
value. If you want to use more strings in your program, set this
number to a larger one but you will have less spaces for your
program.

67

I
I

I
I
I
I
I
I

sa I

I

I

I
I

CHAPTER

CONDITIONS

- IF ... THEN ... ELSE
- CONDITIONAL BRANCHING
- LOGICAL OPERATORS
- TRUTH TABLES

69

70

I

I
I
I
I
I

I

I

I
I

I

Chapter 9

IF ... THEN ... ELSE

As we make our way through BASIC, we find that we gain more
control over the computer, that is, we are able to do more with

. the computer. In this chapter we are going to take a look at the
"IF ... THEN ... ELSE" statement. This is, perhaps, one of
the two most important programming concepts in BASIC. The
other one is "FOR ... NEXT". We will look at this in the
following chapter.

Let us look at this example.

6{') IF A> 8 THEN PRINT A$ ELSE PRINT 8$

This tells the computer that if the expression A$ is greater
than B$ to carry out the statement PRINT A$ and if not to
carry out the statement PRINT 8$.

CONDITIONAL BRANCHING

A condition is made up of:
An expression, a relation and an expression.
Any BASIC expression may be used but the expression

must be of the same type, that is either both numeric or both
string expressions.

Relations or comparisons used in the IF ... THEN state
ment are the following:

= Equal to
< = Less than or equal to
< > Not equal to
> = Greater than or equal to

< Less than
> Greater than

Here are some more examples of how we can use condi
tionals.

71

Chapter 9

IF THEN A= B
IF THEN GOTO

. IF THEN GOSUB
IF THEN PRINT
IF THEN INPUT

Example 1: 13() IF X > 25 THEN 6fJ

If the statement is not true, that is, if X is not greater than
25 then the computer simply carries on with the normal line
number order in the program. Notice that it is not necessary to
use the ELSE part of the COMMAND here as this is optional.

Example 2: TfJ INPUT A, B
2() IF A> B THEN 5fJ
3() IF A< B THEN 6()
4fJ IF A = B THEN lfJ
5() PRINT A; "IS GREATER THAN"; B: END
6() PRINT A; "IS LESS THAN"; 8: END
lfJ PRINT A; "IS EQUAL TO"; B
Bf) END

RUN
? 7

?? 3
7 IS GREATER THAN 3

72

I
I

I
I
I
I
I

I

I

I
I

I

Chapter 9

Example 3: 4f) IF P = 6 THEN PRINT 'TRUE" ELSE PRINT
"FALSE"

In this example if P = 6 the computer will print TRUE.
Any other value will produce a FALSE. In either case the com
puter will carry onto the next line.

It is possible for more than one statement to follow the
THEN or ELSE command.

Example 4: 5f) IF A :::: 5 THEN PRINT "TRUE": S = S - 3:
GO TO' 9f) ELSE PRINT "FALSE": K = K + 8

So if A equals 5 the computer will print TRUE, SUB
TRACT 3 from the variable S and go to line 90. If A does not
equal 5 the computer will print FALSE, and add 8 to the
variable K.

LOGICAL OPERATOR.S

Logical operators are used in IF ... THEN ... ELSE and such
statements where condition is used to determine subsequent
operations within the user program. The logical operators are:
AND, OR, NOT.

For purposes of this discussion A and B are relational
expressions having only TRUE (1) and FALSE (0) values.
Logical operations are performed after arithmetical and rela
tional operations.

73

Operator

NOT

AND -

OR

Example

NOTA

AAND B

AOR B

Chapter 9

Meaning

If A is true, NOT A is false.

A AND B has the value true, only if
A and B are both true.
A AND B has the value false if
either A or B is false.

A OR B has the value true if either
A or B or both are true.
It has the value false if both are
false.

TRUTH TABLES

The following tables are called TRUTH TABLES. They
illustrate the resu Its of the above logical operations with both
A and B given for every possible combination of values.

TRUTH TABLE FOR "NOT" FUNCTION

A NOTA

T
F

F
T

TRUTH TABLE FOR "AND" FUNCTION

A B AAND B

T T T
T F F
F T F
F F F

Note that T = TRUE and F = FALSE.

74

I

I

I

Chapter 9

TRUTH TABLE FOR "OR" FUNCTION

A B AOR B

T T T
T F T
F T T
F F F

NOTE: T-TRUE
F - FALSE

Example: 1fJ INPUT A, B, C
2fJ IF A= BAND B = C THEN PRINT ''A =B=C"
3fJ IF (NOT A= B) OR (NOT B = C) THEN 5fJ
4fJ END
5fJ PRINT ''A= B = C IS FALSE"
6fJ END

RUN
? 1fJ

?? 5
?? 7

A=B=CISFALSE

75

76

I
I

CHAPTER

LOOPING

- FOR ... TO
-NEXT
-STEP

77

78

Chapter 10

FOR TO NEXT STEP

Often we need the computer to perform repetitive tasks. The
looping process enables us to do just this without having to type
in similar information many times.

For example if we want many numbers cubed and then
divided by 3 we don't have to type in various values; all we have
to do is this:

Example: 1() FOR X = 1 TO 1()
2() PRINT X; X t 3/3
3f)NEXT X
4() END

RUN
1 .333333
2 2.66667
3 9. f)f)f)f) 1
4 21.3333
5 41.6667
6 72
7 114.333
8 17().667
9 243
1() 333.333

From the above example we can see that the computer has
cubed and divided by 3 numbers between 1 and 10. The FOR
.... TO statement, therefore, stipulates the range of numbers
you wish to act on.

You will notice that the increments of the numbers were
one each time. The increments can be changed by using the
STEP statement and a positive number. If a negative number
follows the STEP statement we will get a decrement. It is also
possible to use a decimal, as expression or a variable.

79

Example: 1@ FOR X = 1 TO 1@STEP 2
2@PR/NT X; X t 3/3
3@NEXT X
4@END

RUN

Chapter 10

This will act on all the odd numbers between 1 and 10 and
your screen will show the following numbers:

1 .333333
3 9.@@@@1
5 41.6667
7 114.333
9 243

You will also notice that each loop must be closed with a
NEXT statement. The variable name of the NEXT statement
must be the same as the variable name of the FOR statement -
in this case X. On your computer the variable name following
the NEXT statement can be omitted.

Loops are very useful for writing tables as you will see from
the following example.

80

I

Example:

Chapter 10

1fJ REM TO PRINT A SINE AND COSINE TABLE
2f) PRINT "SIN (X)", "COS (X)"
3f) FOR X = f) TO 2 STEP fJ.5
4f) PRINT SIN (X), COS (X)
5fJNEXT X
6f)END

RUN

SIN (X) COS (X)
f) 1
.479426 .877582
.841471 .54f)3f)2
.997495 .fJ7fJ7371
.9@9298 .416147

If you do use a variable name following your NEXT state
ment and you use 2 loops you must be careful not to cross your
loops.

Example: 1f)
~2f)FORX=fJTO 1fJ

3f)
---4f) FOR Y = f) TO 5

5f)
-6f) NEXT X

'-7f) NEXT Y

This causes crossed loops and will result in a NEXT
WITHOUT FOR error message. The correct way is as follows:

81

TfJ
-2fJ FOR X =fJ TO TfJ

3fJ

[;: ~~~-~ -~ ~ _ro 5

6f)NEXT Y
-lf)NEXT X

Chapter 10

This gives you the nested loop for Y inside the loop for X.

82

I

I

CHAPTER

SUBROUTINES

-GOSUB
- RETURN

83

84 I

Chapter 11

GOSUB - RETURN

A program has a beginning and an end. It has a structure. This
structure is made up of smaller building blocks. You may need
some of these blocks or sections of the program many times in
various places in the overall program. To help us deal with these
similar smaller parts of the program we can use subroutines. The
statements we use are GOSUB and RETURN.

TR) PRINT "HELLO"
20 GOSUB 5R)
JR) PRINT "GOODBYE"
40 END
50 PRINT "HOW ARE YOU?"
60 GOSUB BR)
7RJ RETURN
BR) PRINT "SEE YOU"
90 RETURN

RUN
HELLO
HOW ARE YOU?
SEE YOU
GOODBYE

The lines are executed in this order 10, 20, 50, 60, 80, 90,
70, 30, 40. You can see from this example how the GOSUB
statement works

. . . The GOSUB statement tells the computer to move on
to the line number indicated, that is to the line number follow
ing GOSUB. However unlike with the GOTO command the
GOSUB command makes the computer come back again to the
statement that immediately follows the GOSUB statement.

The computer will carry on with the subroutine until the
RETURN statement is met. It is the RETURN statement that
makes the computer go back to the statement following the
GOSUB statement.

85

Chapter 11

For another example:

2@ GOSUB 6@ tells the computer to jump to line 60. The
computer will start executing at line 60 until it meets a
RETURN statement. On meeting the RETURN statement the
computer will go back and start executing at the statement
following the GOSUB statement in line 20.

Have a look at this example and see if you can work out
what's happening.

1@ FOR X = 1 TO 5
2@GOSUB6@
3@PR/NT X;S
4@NEXTX
5@END
6@S=@
7@ FOR J = 1 TO 4
B@S=S+J
9@NEXT J
1@0 RETURN

RUN
1 1@
2 1@
3 1@
4 1@
5 1@

86 I

I

CHAPTER

LISTS and TABLES

-ARRAYS
-DIM

87

I

88 I

I
I
I

Chapter 12

ARRAYS AND DIM

There are two types of variables - Simple Variables and Array
Variables. Up to now we have been dealing with simple vari
ables. Let us now take a look at the Array type.

An array is an organised list of values which provide an
efficient way of handling large amounts of information. The
values can be either numbers or strings. To set up an array·you
have to give the array a name and a size. The name can be either
a letter or a string e.g. A$(5).

It is easy to distinguish an AR RAY from a simple variable.
The AR RAY variable is always followed by brackets containing
a number. e.g. A(2), 8(7), G5$(7). This number in the brackets
is called a subscript.

Why Use ARRAYS?

Let us suppose you have a number of books at home - say 100
books --: and you want to index all your books. If we assign a
variable to each book name for example:

Example: 1fl A$= "GONE WITH THE WIND"
2fl 8$ = "OLIVER TWIST"

1flflfl Y$ = -✓BASIC PROGRAMMING"

This would be very inefficient and time consuming. A better
way of dealing with this list is to use an ARRAY. The variable
A$, will stand for the list of books. Let us look at the following
example:

89

Example: 1D REM BOOK NAMES
2D DIM A$ (1DD)
3DFOR X= 1 TO 1DD

Chapter 12

4@ INPUT "WHAT NUMBER"; A$ (X)
5DNEXT X

RUN
WHAT NUMBER?

After you give a code to the question mark, 'WHAT NUM
BER?' will appear again underneath. This will carry on until
your list is completed.

Before you can use an AR RAY it is necessary to use the
DIM statement. Above we have DIM A$ (100). This tells the
computer to reserve space for the AR RAY called A and that
the ARRAY has 101 subscript variables. It is possible at a later
time to sort, rearrange or print out this set of data. This type of
ARRAY is called a one dimensional ARRAY and it deals with
lists.

It is also possible to have a two dimensional ARRAY where
we have two subscripts and we are dealing with numbers in the
matrix form.

DIM stands for dimension.
Let us suppose we have 5 students doing 3 exams. The

results of the exams look like this

EXAM (1) EXAM (2) EXAM (3)

STUDENT 1 50% 70% 90%
STUDENT 2 63 42 36
STUDENT 3 20 62 50
STUDENT 4 70 75 84
STUDENT 5 93 82 68

These results can be recorded on the computer using a two
dimensional ARRAY. We would have to start with the state
ment: DIM A(5, 3). Here 5 is the number of students and 3 is

90

I
I
I

I
I
I
I

I

I

Chapter 12

the number of columns and in this case exams. So A(4, 1) will
be 70. This is the score of the fourth student in the first exam.

It is possible to have up to a three dimensional ARRAY -
DIM A(3, 6, 2). The size of each dimension is limited by the
memory size of the computer so remember; A(X) is a one
dimensional array variable, A(X, Y) is a two dimensional array
variable, and A(X, Y, Z) is a three dimensional one.

Note that if you do not use the DIM statement the sub
scripts 0 - 10 are allowed for each dimension of each array
used.

91

92

I
I

I

I
I

·1

I
I
I

I

I

I
I
I

CHAPTER

READ,DATA,RESTORE

- READ
-DATA
- RESTORE

93

I
I
I
I
I
I
I
I
I
I
I

94 I

I
I
I
I

Chapter 13

READ,DATA

When it is necessary to enter a lot of information or data into a
computer, using the INPUT statement can be very -time con
suming. To help us out here we can use the READ and DATA
commands.

Example: 1fJ DATA 1fJ, 6fJ, lfJ, BfJ, 9fJ
2fJ READ A, B, C, D, E
3f) PRINT A; B; C; D; E

RUN
1fJ 6fJ lfJ Bf) 9f)

The READ statement consists of a list of variables with
commas between each variable.

The DAT A statement consists of a list of expressions
separated by commas. These expressions can be either numeric
or strings. The READ statement makes the computer look up
the value of its variables from the DATA statement. When the
computer goes to READ first it will assign the first expression
from the DAT A I ist. The next time it goes to READ it wi II
assign the second value - And so on. If the READ runs out of
DATA you will get? OUT OF DATA ERROR.

RESTORE

If you want to use the same data later on in the program you
can do so by using the RESTORE statement.

95

Example: 1fJDATA 1,3,8,9
2() READ A, B, D
3() RESTORE
4() READ X, Y
5() PRINT A; B
6() PRINT X; Y
lfJ END

RUN
1 3
1 3

Chapter 13

The RESTORE command makes subsequent READ state
ments get their values from the first DAT A statement.

Now see if you can work out what is happening here.

Example: ff} REM FIND AVERAGE
2() DATA fJ.125, 3, fiJ.6, 7
3() DAT A 23, 9.3, 25.2, 8
4() S = 0
5() FOR I= 1 TO 8
6() READ N
lfJS =S + N
80NEXT
9() A= SIB

1()0 PRINT A
RUN
9.52813

Now using our student's examinations results from the
chapter on arrays (chapter 12) see how the READ and DAT A
commands can be used.

96

I
I
I

I
I
I
I
I
I

I
I
I
I
I
I

Chapter 13

Example: 1fJ CLS: DIM A(5, 3)
2fJ PRINT "RESULT": PRINT
3f) PRINT TAB(B); "EX(1) EX(2) EX(3)"
4f) PRINT
5fJ FOR J = 1 TO 5
6f) PRINT "STUDENT"; J;
lfJ FOR I= 1 TO 3:READ A(J, !):PRINT A(J, I);:

NEXT: PRINT
Bf) NEXT
9f) END

1 f)f) DA TA 5(}, lfJ, 9(), 63, 42, 36, 2fJ, 62, 5fJ, ll!J, 75
11fJ DA TA 84, 93, 82, 68

RUN

97

I
I
I
I
I
I

I
I
I
I
I

98 I

I
I
I
I

I

CHAPTER

PEEK and POKE

- PEEK
- POKE

99

I
I

I

I

I
,oo I

I

Chapter 14

PEEK (address)

This PEEK function will return the value stored at the specified
address in the memory of the computer. The value will be
displayed in the form of a decimal. The value is in the range of
0- 255.

Example: 3fJ A= PEEK (28672)

This returns the value the program has at 28672 and gives
this value to A. It should be noted that the address need not be
a value it can be an expression.

POKE address value, expression

The POKE function complements the PEEK function. It sends a
value to the stated address location. You need therefore an
address and value, and again the value has to be between 0 and
255.

Example: 1fJ A= 1
2fJ POKE 29fJfJfJ, A
3fJ B = PEEK (29fJf)fJ)
4fJ PRINT B

RUN
1

When using this command we must be very careful as it can
destroy your program. It is wise to save the program before you
execute POKE. It is not recommended for newcomers without
prior knowledge of what it does. You can only POKE to the
Random Access Memory (RAM) that is to the place where
the computer stores the information it wants to keep like your

101

Chapter 14

BASIC program, variables, the picture for the television and the
various musical notes. So may be the address you indicate may
not be in the memory of the computer. The address is in the
range of -32768 to +32767.

Screen locations for POKE and PEEK commands are hexi
decimal 7000 - 71FF (Decimal 28672 - 29183) in TEXT
mode and 7000, 77FF (Decimal 28672-36863) inGRAPHIC
mode. Starting location is decimal 28672.

28672 28704f-+---t-t--+-t---+--t-+-+-+-+-+-+--+---+--t-+-+++-+-+--+---+--l--+-++++-I-I

28736 r-+---+--l-+-+-+-+--t-++-+-+-+-+--+--,-+-+-+-+--l-++-+-+-++--+--,-+-+-+
28768
28800t-+-+-++-+-+-+--+--!---+--l-+-+-+-+++-+-+-+-l-l--+-!--l-----l-------l-+++-+-----I

28832
28864r++-t-t--i'-t-t-t-++++--+----t--+-+-+-+++-+-l--l--+-+-+-+++--+~

28896
28928rt---t-t---t-1-t-rt-++-+-+-+--l---+--t-+-++++--+--!--+--l------+-++-+---+-l----l

28960
28992i--t----t-t----t-t--t---t-t-----+-i-+-+-+---+-t-----+-if-+--++-+-+-+-l-+-+++-+-+-l--

29024
29056H-+-t-t-t--t-+-+-+-t-+-+-HH-+-++++--+--+----tH-+-+-+++--+~

29088
29120r++-t-t-H-+-+-+++-+-H--+-+-++++--+-l--l-l--+-+-+++--+~

29152 '---'----'------''---'-.....__,_ _ ____._-L..1..._.__J......._..L....L_i_L....L-1._J__l_L...J......L.JL.L--L....L_j_Lj_--1......J

102

I

Example: POKE
TfJ CLS: SC= 28672
2fJ FOR I = 1 TO 9
3f) READ A
4f) POKE SC+ I* 32,A
5fJ NEXT
6f) GOTO 6f)

Chapter 14

7f) DA TA Bf), 79, 75, 69, 32, Bf), 69, 69, 75

TYPE ICTRLI I BREAK I to break this program

PEEK
Tf) CLS: SC= 28672
2f) PRINT "PEEK": PRINT
3f) FOR I= f) TO 3
4f) PRINT PEEK (SC+ I);
5f) NEXT

103

Chapter 14

Your computer has some different character codes to most
other computers. They are shown below:

NEW CHARACTERS CODE (FOR POKE & PEEK)

(A) (A) (A) (A)

0 @ 16 p 32 48 0

1 A 17 Q 33 ! 49 1

2 B 18 R 34
,,

50 2

3 C 19 s 35 # 51 3
'

4 D 20 T 36 $ 52 4

5 E 21 u 37 % 53 5

6 F 22 V 38 & 54 6

7 G 23 w 39
,

55 7

8 H 24 X 40 (56 8

9 I 25 y 41) 57 9

10 J 26 z 42 * 58

11 K 27 [43 + 59 ,

12 L 28 \ 44 , 60 <
13 M 29] 45 - 61 =

14 N 30 t 46 62 >
15 0 31 +-- 47 I 63 ?

104

I

I

I

I

Chapter 14

(A) 1ST COL - CHARACTER CODE
2ND COL - ASCII REPRESENTED

FOR A= 0- 63
gives normal characters.

By adding an offset
A = 0 - 63 (+ 64) ~ 64 - 127
gives inverse characters.

(A) (A)

128 □ 136

129 ~ 137

130 .:J 138

131 - 139

132 ~ 140

133 [I 141

134 ~ 142

135
_.

143

~
~
I] ..
~
~
~

■

FOR A = 128 - 255 the codes
are divided into 8 (graphic char
acters) groups each with dif
ferent color code. (The shaded
area has color.)
FOR A= 128 - 143 GREEN

105

= 144- 159 YELLOW
= 160 - 175 BLUE
= 176 - 191 RED
= 192 - 207 BUFF
= 208 - 223 CYAN
= 224- 239 MAGENTA
= 240- 255 ORANGE

106

I
I

CHAPTER

STORING PROGRAM ON TAPE
(CASSETTE INTERFACE)

- SETTING IT UP
- C LOAD
- VERIFY
- C SAVE
-C RUN
- PRINT#
- INPUT#

107

I
I

I

100 I

I

I
.1

Chapter 15

You may have developed some programs which you want to
retain. It is too much trouble to type in a program, especially
if it is long, every time- you want to use it. This problem is
easily solved. You can store your programs on tape and when
ever you need them call them into memory.

SETTING IT UP

To do this you need an ordinary cassette tape recorder, a
cassette tape and interconnecting cords. Connect the recorder
as shown in the picture.

COMPUTER
BACK OF UNIT

CASSETTE RECORDER

I
RED

EAR

' You need to be familiar with three commands, namely,
CSAVE, CLOAD and VERIFY.

You have received a cassette tape with your computer. On
one side of this tape there is a program and the other side is
blank. It is suggested that you start by loading this program into
the computer,

109

Chapter 15

There is a file name for each program on the tape. A file
name is a "must" for saving a program but not absolutely neces
sary for loading and verifying a program.

The file name can be one to sixteen characters in length.
The first character must be a letter; the rest can be any
character.

For our purpose saving a program means transfer~ing a
program that you have typed in, to a tape.

Verifying a program means checking to make sure that the
program on the tape is the same as the program in the computer.

Loading a program means transferring a program from the
tc;ipe to the computer.

CLOAD "FILE NAME"

The procedure for loadirig the program from the tape to the
computer is as follows:
1. Load the tape containing the required program into the

recorder.
2. Rewind the tape to the start of the required program.
3. Type the COMMAND CLOAD ✓-FILE NAME'~

BE SURE NOT TO PRESS THE I RETURN I KEY

4. Press the play button on the recorder.

5. Press the !RETURN! key.

6. If the computer finds no program on the tape, the state
ment WAITING fs displayed on the screen. If you want the

computer to come out of WAITING, PRESS the ICTRLI

I BREAK I keys before stopping the cassette recorder.

7. If the incoming program has the file name which does not
match with the specified one, then the statement 'FOUND
T: FILE NAME' appears and the program is. skipped.

8. The desired program is loaded with the statement 'LOAD
ING T: FILE NAME' appears.

9. When the statement READY is displayed, press the STOP
button on the recorder.

110

I

I

(

I
I

Chapter 15

Let us suppose there are three programs on the tape and
you have given them file names: PROGRAM 1, PROGRAM 2,
PROGRAM 3. You want PROGRAM 3 and it is at the end of
the tape. You can type: CLOAD "PROGRAM 3". Then your
screen will show:

CLOAD "PROGRAM 3"
WAITING
FOUND T: PROGRAM 1
FOUND T: PROGRAM 2
LOADING T: PROGRAM 3
READY

If you know the location of PROGRAM 3 and you set the
tape at the beginning of this program the screen will show:

CLOAD "PROGRAM 3"
WAITING
LOADING: PROGRAM 3
READY

NOTE T: stands for TEXT file.

VERIFY "FILE NAME"

To verify a program on tape the procedure is as follows:
1. List the program in the computer to make sure that the

program still exists.
2. Type the COMMAND VERIFY "FILE NAME"

BE SURE NOT TO PRESS THE !RETURN! KEY.

3. Press the play button on the recorder.

4. Press the IRETURNI key. The flashing CURSOR will dis

appear and the verifying begins.

111

Example: VERIFY "PROGRAM 2"
WAITING
FOUND T: PROGRAM 1
LOADING T: PROGRAM 2
VERIFY OK
READY

Chapter 15

5. The 'OK' statement tells us that the program on the tape is
the same as the program in the computer.

6. If the verifying is incorrect, the statement 'Verify Error'
will be displayed on the screen. This statement shows that
the program on the tape is different from the one in the
computer. In this case the user should store the program
and verify it once again.
You can verify that there is a program on the tape by

listening. If there is a program on the tape and you run it on
the cassette recorder, the recorder will give out a distinctive
sound.

CSAVE "FILE NAME"

If you wish to save a program, make sure that you use a good
quality tape. The quality of the tape can affect the quality of
your recording.

It is important to set the volume of the cassette recorder
within a proper range. This range will vary from one recorder
to another. The tone should be set to MAXIMUM level.

The procedure for storing/saving a program is as follows:
1. Type in the complete program. It is advisable to use a short

program at the start. Longer programs can be saved once
you have achieved success with a short program.

I
I

2. Type in the COMMAND CSAVE "FILE NAME" I
Remember a File Name is a "MUST" for saving a program. . .
BE SURE NOT TO PRESS THEIRETURNIKEY

112

I
I
I

Chapter 15

3. Load the recorder with a good quality tape.
4. Press the PLAY and RECORD buttons on the recorder.

5. Press the I RETURN! key.

The flashing CURSOR will disappear and the storing begins.

6. When the flashing CURSOR reappears, the storing is com
pleted.

7. Press the STOP button on the recorder.
The program that you typed in is now stored on a tape. To

make sure that it is stored the user may verify this for himself.

CRUN "FILE NAME"

One more powerful COMMAND 'CRUN' can be used. This
command is similar to 'CLOAD' except that the loaded program
will start execution automatically after the loading is completed.

The four cassette interface COMMANDS, CSAVE, VERIFY,
CLOAD and CRUN help the user to save his programs, verify
them, and get them back into the computer to execute. The
user should pay att~ntion to the volume level of the recorder.
Cassette interface is a means of inexpensive MASS STORAGE.

There are two more COMMANDS that the user should
become familiar with. There are:

PRINT#
PRINT # "FILE NAME", item list sends the values of the
specified variables or data onto a cassette tape. It is under
stood that the recorder must be properly connected and
set in record mode when this statement is executed.

INPUT#
INPUT# "FILE NAME", item list.
Inputs the specified number of values stored on cassette and
assigns them to the specified variable names.

113

Chapter 15

Example: 10 PRINT# "KAM", 1, 2, 3, 4, 5
RUN

The data 1 to 5 are saved in the data file "KAM". BE SURE
to put your cassette recorder in RECORD mode BEFORE
execution.

Example: 10 INPUT# "KAM", A, 8, C, D, E
20 PRINT A; B; C; D; E

RUN
FOUNDD: KAM
1 2 3 4 5

The data in the data file "KAM" are assigned to the vari
abies A to E. BE SURE to put your cassette recorder in PLAY
mode BEFORE execution.

NOTED: stands for DATA file.

114

I

I

I

I
I

I
I
I

CHAPTER

GRAPHICS

- MODES
- GRAPHIC CHARACTERS

- - INVERSE
-SET
...., RESET
- POINT

115

116

I

I
I
I
I
I

I
I

I

I

J

1

Chapter 16

MODES

There are 2 different modes of screen display. Once the power
is turned on, the computer is in the normal Text mode, MODE
(0), with 32 characters multiplied by 16 lines. This displays
64 x 32 Dots with 9 colors. It is best used when some low
resolution graphics and text are required as the video output is
more attractive and appealing.

The user can switch to the High Resolution Graphic mode,
which has 128 x 64 Dots and 8 colors by making use of the
MODE (1) command. This mode provides extra-fine graphics
and is very suitable for games purposes.

To get back to normal Text mode you should use the
MODE (0) command.

GRAPHIC CHARACTERS

There are 16 graphic characters in your computer which can be

typed by pressing the I SHI FT I key and any of the correspond

ing keys. These characters are useful for drawing pictures and
graphs.

Have a look at the program beneath to see how you can use
these characters.

Example: 1fJ REM COLOR
2fJ FOR I = 1 TO 52
3f) FOR J = 1 TO B
4fJ COLORJ
5f) PRINT"■ ";
6f) NEXT
lfJ NEXT
Bf) GO TO Bf)

117

Chapter 16

This example uses the graphic character shown in the pro
gram to plot some graphics. This example also shows all the 8
different colors in the TEXT mode by using graphic character.

This example only uses one graphic character. For the rest
of them, you may observe your keyboard to see where they are
located.

INVERSE

The inverse characters can be produced by simply pressing

the !CTRLI and I INVERSE I keys. Your computer will remain

in the inverse mode until the jCTRLI and jlNVERSEI or

jRETURNj key is pressed.

SET(X,Y)

On your computer this is used when dealing with colors. It plots
a dot at a specified location on the screen which is determined
by the values of X and Y. The value of X can be from 0 to 127
and the value of Y can be from 0 to 63.

118

I

I

I

J

I

I

Chapter 16

RESET (X, Y)

This is used to wipe out a point switched on by the SET com
mand. The X and Y values determine the location of the point
to be wiped out. This is done by making the point the same
color as the background.

POINT (X, Y)

This tells you if a specific point has been fixed by the SET
command. Usually it is used with the IF-THEN-ELSE state
ment.

Like this:

BR' SET (4D, 2D): IF POINT (4D, 2D) THEN
PRINT "YES" ELSE PRINT "NO"

Here is another example of the use of SET and also one
using POINT.

Example of SET and RESET:

TD MODE (1): COLOR 2
2D FOR I= D TO 31
3D SET (I, 1/2)
4D NEXT
5D FOR I =D TO31
6D RESET (I, 1/2)
7D NEXT
BR' MODE (D)

This example will plot a diagonal line on the screen and
then rub this line out. When this program is completed, the
computer will return back to MODE (0), that is TEXT mode.

NOTE: If you want to keep the computer in graphic mode,
replace line 80 by: 8@ GO TO BR'.

119

Example of POINT:

1() MODE (1): DIM A(4)
2() FOR I= 1 TO 4
3() COLOR I
4() SET (I, I)
5() A(!)= POINT (I, I)
6() NEXT
7() MODE (f))
Bf) FOR I= 1 TO 4
9@ PRINT A(!)

1f)f) NEXT

Chapter 16

This example will plot points on the screen with four colors.
This command POINT will check the color of that point and
hold this information in the array A(I). Afterwards, the pro
gram will print out the color of that point checked by the
command POINT.

120

I
I

I
I
I
I
I
I
I
I
I
I

I
I
I

I
I
I

CHAPTER

MORE COMMANDS AND INFORMATION

- PRINT@
- PRINT TAB
- PRINT USING
-INP
-OUT
-USR

121

122

I

I

Chapter 17

PRINT@

This command causes the output to be produced at a particular
point on the screen. When dealing with the PRINT@ command
consider your screen to be a grid divided up into 32 x 16 spaces.
Therefore there are 512 possible positions. The command takes
this form

PRINT@position, item list.

The position can be a number, variable or arithmetic expression.
The value must be between 0 and 511.

Example: I 6fJPRINT@6fJ,6fJfJ;

Notice the use of the semi-colon at the end of the state
ment. This stops the rest of the line from being rubbed out.

PRINT TAB (expression)

This command works in very much the same way as the TAB
on a typewriter. In this case it moves the cursor to a particular
point on a line. The value of the expression must be between
0 to 255 inclusive. If it is over 63 the cursor will move to the
position that exceeds the maximum integer multiples of 64.

Example: 4fJ PRINT TAB (6); 1; TAB (2fJ); 1
RUN
1 1

123

Chapter 17

PRINT USING string; item list

This command is useful in allowing you to state how you want
your lines printed. It is very useful for reports and tables.

lttakestheformof ·

PRINT USING string; value or string

This string or value can be either a variable or constant.
What will happen is that the string or value to the right of the
semi-colon will be inserted as specified by the field specifiers,
the preceding string.

A) "!" This specifies that only the first character in the given
string is to be printed.

_Example: ff} A$= "ASDF"
2f) PRINT USING"!"; A$
RUN
A

B) "#" A number sign is used to represent each digit position.
Digit positions are always filled. If the number to be printed
has fewer digits than positions specified, the number will be ·
right justified (perceded by spaces) in the field.
"." A decimal point _may be inserted at any position in the
field. If the format string specifies that a digit is to precede
the decimal point, the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.

124

I

I
Example: I PRINT USING"##.##"; .78

0.78

Chapter 17

C) "+" A plus sign at the beginning or end of the format string
will cause the sign of the number (plus or minus) to be
printed before or after the number.
"-" A minus sign at the end of the format field will cause
negative numbers to be printed with a trailing minus sign.

Examples: PRINT USING "+##.##";-68.95
-68.95
PRINT USING"##.##-"; -68.95
68.95-

D) "**" A double asterisk at the beginning of the format string
causes leading spaces in the numeric field to be filled with
asterisks. The** also specifies positions for two more digits .

. Example: PRINT USING "**#.#";-0.9
*-0.9

E) "$$" A double dollar sign causes a dollar sign to be printed
to the immediate left of the formatted number. The $$
specifies two more digit positions, one of which is the
dollar sign. The exponential format cannot be used with
$$. Negative numbers cannot be used unless the minus sign
trails to the right.

Example: PRINT USING "$$###. ##':· 456.78
$456.78

125

Chapter 17

"**$"The**$ at the beginning of a format string combines
the effects of the above two symbols. Leading spaces will be
asterisk-filled and a dollar sign will be printed before the
number. **$ specifies three more digit positions, one of
which is the dollar sign.

F) "," A comma that is to the left of the decimal point in a
formatting strir;ig causes a comma to be printed to the left
of every third digit to the left of the decimal point. A
comma that is at the end of the format string is printed as
part of the string. A comma specifies another digit position.

Example: PRINT USING"####,.##':· 1234.5
1,234.5f)

G) "%" If the number to be printed is larger than the specified
numeric field, a percent sign is printed in front of the
number. If rounding causes the number to exceed the field,
a percent sign will be printed in front of the rounded
number.

Examples: PRINT USING"##.##':· 111.22
%111.22
PRINT USING '~ ##"; .999
% 1.fJfJ

~126

I

Chapter 17

INP (I)

This returns the byte read from port I. I must be in the range 0
to 255. INP is the complementary function to the OUT state
ment (see below).

· Example: 1fJfJ A = /NP (255)

OUT I, J

This sends a byte to a machine output port. I and J are integer
expressions in the range 0 to 255. I is the port number and J is
the data to be transmitted.

Example: 1fJfJ OUT 32,1fJfJ

USR (X)

This calls the user's assembly language subroutine with the
argument X. This subroutine could be taken from tape or made
by POKE ing instruction into memory locations. It is advised
to take great care when using this function as it can have disas
trous effects on any stored program.

Example: 11fJ A = USR (8/2)

127

I

128

I
CHAPTER

SOUND AND SONGS

-SOUND
-SONGS

I
129

130

Chapter 18

SOUND

Another interesting feature of the computer is its ability to
produce sound. Here is an example program.

Example: 11/) FOR I= 1 TO 8
21/) READ X
31/) SOUND X, 7
41/) NEXT
51/)DATA 16, 18,21/),21,23,25,27,28

RUN

This will produce 8 notes going up the scale. In this program
the variable X is the frequency and the constant 7 is the dura
tion of the note.

It is possible to get 31 different frequencies and 9 different
note durations. The tables below show how which codes pro
duce the different frequencies and duration.

By varying the notes and duration therefore, and using the
tables below, it is possible to produce'tunes of your choice.

131

Chapter 18

DURATION

Code Note Note length

1 J= 1
8

2 ,;= 1
4

3 J:" 3
8

4 ;- 1
2

5 ~
3
4

6 J 1

7 i 1 _!_
2

8 d 2

9 d. 3

I
I

132 I

Chapter 18

FREQUENCY
Code Pitch Code Pitch

0 rest 16 C4
1 A2 17 C#4
2 A#2 18 04
3 B2 19 0#4
4 C3 2(/J E4
5 C#3 21 F4
6 03 22 F#4
7 0#3 23 G4
8 E3 24 G#4
9 F 25 A4
H/) F#3 26 A#4
11 G3 27 B4
12 G#3 28 C5
13 A3 29 C#5
14 A#3 30 05
15 B3 31 0#5

133

Chapter 18

SONGS

Below you can see how a musical score is transposed into
Data for the computer.

Key F

TWINKLE, TWINKLE, LITTLE STAR
Nursery Rhyme

d d s s I Is ff mm

' & 411 J J r r IL L f' I J J J J
Twin-kle, twin-kle, lit-tie star, How I won-der

r rd s sf f mm r

J J ,l I r r r r I J J J
what you are! Up a-bove the world so high,

s sf f mm rd d s

r r r r 1J J J IJ J r
Like a dia-mond in the sky. Twin-kle, twin-kle,

s

r

@& s f j m m r r
'

d

r c f' I J J J IJ J ,I
lit-tie star, How I won-der what you are!

TWINKLE, TWINKLE, LITTLE STAR

II

2 DATA 21,4, 21,4, 28,4, 28,4, 30,4, 30,4, 28,6, 26,4, 26,4, 25,4
4 DATA 25,4, 23,4, 23,4, 21,6, 28,4, 28,4, 26,4, 26,4, 25,4, 25,4,

23,6
6 DATA 28,4, 28,4, 26,4, 26,4, 25,4, 25,4, 23,6, 21,4, 21,4, 28,4,

28,4
8 DATA 30,4, 30,4, 28,6, 26,4, 26,4, 25,4, 25,4, 23,4, 23,4; 21,6
10 FOR I= 1 TO 42: READ F, D: SOUND F, D: NEXT: END

134

I

CHAPTER

COLOR

-COLOR

135

136

I

I

I
I

Chapter 19

COLOR

Your computer, as you already know, is capable of producing
different colors. With COLOR I, J, I is the foreground color -
from 1 to 8 and J is the background color - from 0 to 1.

In MODE (0);

Code Color

1 Green
2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Orange

The background color can be either green (0) or orange (1).
To change the background color just type color, 1. To get back
to the original just repeat using 0 instead of 1.

In MODE (1)

With background color is green (0)

Color Code Color

1 green
2 yellow
3 blue
4 red

and with background color buff (1).

Color code Color

5 buff
6 cyan
7 magenta
8 orange

137

Chapter 19

Your computer will also accept COLOR I or COLOR J. It
will remain in the defined color mode until another COLOR
command is executed.

TfJ FOR I =f) TO 15
2fJ FORJ=f)TO31
3f) COLOR (l/2) + 1
4f) PRINT"■ ';
5fJ NEXT: NEXT
6fJ FOR I= 1 TO Tf)f)f): NEXT
lfJ END

Note: By pressing I SHI FTI and Q] keys together you get the

character ■.

This will display the eight colors that your computer is
capable of production in this mode.

The colors in your computer are very suitable for graphic
and game purposes especially in MODE (1).

138

I

I

I

I
I

THE PRINTER

- L LIST
- L PRINT
-COPY

139

140

I
I
I

I

I

I
I
I
I

I

Chapter 20

To further expand the capabilities of your computer you can
acquire a PRINTER. This can be attached to your computer
by means of a PRINTER INTERFACE. If you decide to acquire
a PRINTER, you will receive a separate leaflet containing
detailed operating instructions.

SETTING UP THE PRINTER

To operate the computer successfully you need to be familiar
with the following: LLIST, LPRINT, COPY.

LLIST

This performs a similar function in relation to the PRINTER
as LIST does in relation to the TV screen. LLIST outputs to
the PRINTER.

141

Chapter 20

LPRINT

This command (and statement) is similar to PRINT. LPRINT
is used with the PRINTER.

COPY

The PRINTER will print out what you see on the screen to

the PRINTER. You can stop the PRINTER by pressing the

ICTRLI IBREAKI key.

This command can only be used for SEIKOSHA GP-100
and SEIKOSHA GP-100A PRINTERS.

142

I

I

I

I
APPENDIX

- ERROR MESSAGE
- ASCII CODE TABLE
- SUMMARY OF BASIC COMMANDS

143

I
I
I

I
I

I
144 I

I Appendix

ERROR MESSAGE

I - NEXT WITHOUT FOR
- SYNTAX ERROR
- RETURN WITHOUT GOSUB
- OUT OF DATA
- FUNCTION CODE
- OVERFLOW
- OUT OF MEMORY
- UNDEFINED STATEMENT
- BAD SUBSCRIPT
- REDIMENSIONED ARRAY
- DIVISION BY ZERO
- ILLEGAL DIRECT
- TYPE MISMATCH
- OUT OF SPACE
- STRING TOO LONG
- FORMULA TOO COMPLEX
- CAN'T CONTINUE
- MISSING OPERAND
- BAD FILE DATA
- DISK COMMAND

145

Appendix

ASCII CODE TABLE I
ASCII ASCII
CODE CHARACTER CODE CHARACTER

32 (Space) 64 @ (at sign)
33 ! (exclamation point) 65 A
34 " (quote) 66 B
35 # (number or pound sign) 67 C
36 $ (dollar) 68 D
37 % (percent) 69 E
38 & (ampersand) 7(/J F
39 I (apostrophe) 71 G

40 (open parenthesis) 72 H
41 (close parenthesis) 73 I

· 42 * (asterisk) 74 J
43 + (plus) 75 K
44 I

(comma) 76 L
45 - (minus) 77 M
46 • (period) 78 N
47 / (slant) 79 0

48 0 8(/J p
49 1 81 Q
50 2 82 R
51 3 83 s
52 4 84 T
53 5 85 u
54 6 86 V
55 7 87 w I 56 8 88 X
57 9 89 y
58 (colon) 9(/J z
59 (semicolon)
6(/J < (less than)

I 61 = (equals)
62 > (greater than)
63 ? (question mark)

146 I

I

I
SUMMARY OF BASIC COMMANDS

Functions:

1) Arithmetic operators

+,-,*,/,t

2) Relational operators

3) Arithmetic functions:

SOR - Square root
I NT - Integer part
RND - Random number
ABS - Absolute magnitude
SGN -Sign
COS-Cosine
SIN -Sine
EXP - ex
TAN - Tangent
LOG - Natural logarithm
A TN - Arc tangent

4) String functions:

LEN - Length
STR$ - String of numeric argument
VAL - Numeric value of string
ASC - ASCII value
CH R$ - Character
LE FT$ - Left characters
MID$ - Middle characters
RIG HT$ - Right characters
INKEY$ - Check keyboard

147

Appendix

Appendix

5) Logical operators

A~~ Relation and logical expressions have value 1 if true,
NOT 0 if false.

6) Graphics and sound functions:

CLS - Clear screen
SET - Plot a point
RESET - Clear a point
POINT - Return the color code
COLOR - Set color
SOUND - Produce tone of different frequency and duration
MODE - Select graphic or text

7) Program statements

DIM - Dimensions
STOP
END
GOTO
GOSUB
RETURN
FOR ... TO ... STEP
NEXT
REM
IF ... THEN ... ELSE
INPUT
PRINT
PRINT TAB
PRINT USING
PRINT@
LET
DATA
READ
RESTORE

148

I

I

I

I

I
I

8) Commands:

LIST
RUN
NEW
CONT

Appendix

VERIFY - Check whether program on tape and memory
are equal

CLOAD - Load program on tape
CSAVE - Save program on tape
CRUN - Load program on tape and run
CTRL BREAK - To halt program

9) Other Statements

PEEK - Return the value stored at the location specified
POKE - Load a value into a specified location
LPRINT - Print on line printer
LLIST - List on line printer
INP - Return the contents read from ports
OUT - Send values to ports
COPY - Copy the content on screen to printer
USR - Call the user's assembly language subroutine

149

~ sm_prt-
[a AL~CJr

